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A convex function f given on [-1, I] can be approximated in Lp- 1 < p < ex,
by convex polynomials P" of degree at most n with the accuracy 0(11-""), This
follows from the estimate Ilf-P"llp~c-lI-"P'W~(f,lI-')I,q, where I ~p~ex,
p-'+q-'=I, ,/,(x)=(I-x')',", and (J)~(f,t) is the DitzianTotik modulus of
smoothness in the uniform metric. r, 1995 Academic Pre". Inc,

One of the peculiarities of convex functions is that they can be
approximated in Lp[ - I, I] by algebraic polynomials of degree at most n
as O(n 2) when p= I (Ivanov, [2]), and as 0(n- 2,'1') when I <p< fX)

(Stojanova, [6]). The estimates remain valid if the convex function f is
approximated by convex polynomials (see Nikoltjeva-Hedberg [5] for
p = I, and Remarks below for I < p < Cf). In the uniform metric, a convex
function f can be approximated by convex algebraic polynomials of degree
at most n with the accuracy O( wi(j, 1l - I), estimated in terms of the
Ditzian-Totik modulus of smoothness wi(j, 1) (Leviatan, [3]). The
estimate presented in this note naturalIy embraces the results indicated
above.

Let

(Vi(j, 1):= sup ILl7."'lxJ(x)l,
O~It'S:t
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J7,q>(xJ(x) = f(x - hrp(x)) - 2f(x) +f(x + hrp(x))

if x ± hrp(x) E [ -I, I], and J7,q>(xJ(x) = 0 elsewhere.
We prove the following theorem:

THEOREM. For a convex function f defined on [ -1, 1] there exist convex
polynomials P" of degree at most n such that

IIf- P"lI p ~ c· n- 2
/p . w'f([, n- I

)I/q, (I)

where I/p + I/q = I, and I ~p ~ 00, and c is independent of nand p.

Remarks. (i) It follows from the Theorem that a convex continuous
function f can be approximated in Lp [ -1,1], 1<p < 00, by convex
polynomials of degree at most n with the accuracy o(n -2/p ).

(ii) The formula c=CO·(j(f)I/P, where (j(f):=maxXE[_I.I]f(x)

min x E [ _ I. I] f( x), shows how the constant in (I) depends on the function
f Being inherent in results of Ivanov's type, this dependence disappears in
Leviatan's estimate when p = 00.

Proof of the Theorem. It suffices to prove the theorem for a non
decreasing function f satisfying the conditions f( - I) = 0 and f( I) = I, and
polynomials P" of degree at most 8n where n is large enough.

We use the method of shape-preserving approximation developed by
DeVore and Yu [IJ, and Leviatan [3,4]. For a convex functionfthis
method provides convex polynomials P" of degree at most 8/1 satisfying the
condition

II!- P" II c£. ~ C • wi([, n -I). (2)

We will prove that the polynomials P" approximate the function f in the
LJ-metric so that

(3)

The estimate (I) immediately follows from (2) and (3).
We use the following properties of the partition -I = (0 < (I < .. , <

(" = I defined in [3]:

(i) ~j+I-¢j~C·/1-J·(l_¢Y/2,

(ii) sint"_j~c·(l-¢Y/2,

where j = 0, ... , n - I and t i = in/no These inequalities follow easily from
[3, Lemma A].



NOTE 143

Let S be the piecewise-linear function interpolating f at the points
~o, ... , ~n' Then

n-l

Six) = I a/Pj(x),
j=O

(4 )

where (Xo = [~O, ~1] f, a) = (~j+ 1- ~j_ d[ ~j_ l, ~)' ~j+ 1] f for j = 1, ... , n - I,
CfJj(x) = (x - ~)+, and [ .. , ]f are divided differences of f Observe that
2»(1 - ~) = S(I) =f(l )= 1, and convexity off implies that (X) ~ o.

We claim that

(5)

Denote by I) the linear functions interpolating f at ~j and ~j+ l' Then
10(.\,) = ao(x + I), and Ij(x) = Ij_I(x) + (Xj(x - ~j) for j= 1, ... , n -I. Since f
is convex and satisfies the conditions f( - 1) = 0 and f( I) = I, we obtain
that 0 ";;:f(x),,;;: lo(x) for x E [~o, ~ tJ, and l)_ I(X) ";;:f(x),,;;: I)x) for
XE[~j'~j+l]. By (i), Ilf-SIIL1[¢o.¢iJ";;:1I/01ILl[¢o.¢,]";;:c)n-z(Xo(1-~0) and
Ilf- SII Ll[¢J;¢J+l]";;: Illj-lj-111 L,[¢,.¢/+I]";;: C ln -zo:)(1_ ~). Therefore, IIf- Sill ,,;;:
cln-z.E(X)I-~j)=cln-2.

The polynomials PIJ are defined by the formula PIJ(x) = 1::;':1: (XjRi(x);
here Ro(x)=I+x and for every i=I, ...,n-1 the polynomials Ri(x) of
degree at most 8n approximate the truncated powers CfJ j with the accuracy

(6)

where d,,( t) = 1 +nit - t"l, t" = kn/n, and x = cos t (see [4, Lemma 6] with
j= 2i-n).

We claim that

(7)

Indeed, by (6)

JJ-]

IIS-PlJlll ,,;;:cn- l L (Xjsin t,,_j·a i ,

;=1

where a j = J~ dj(t) -5 sin t dl. Integrating over the intervals [Ij , I j + 1] and
using the estimate sin I";;: n( 1 + Ii - jl) sin IIJ _ i' Ij ";;: I ,,;;: Ij + I' we obtain that
aj,,;;:c\n- I sin I"_i' Therefore, by (ii),

,,-1

Ils-p"lI] ,,;;:czn- 2 I (Xj(1-~i)=C2n-2.
i=O

The estimates (5) and (7) yield (3). I
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